

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/tweetfieldtypebundle/checkouts/ezp-27376-migrate-steps-to-markdown/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/tweetfieldtypebundle/checkouts/ezp-27376-migrate-steps-to-markdown/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

	Developer

	Creating a Tweet Field Type

	Build the bundle

 Developer : Structure the bundle

At this point, you have a basic application-specific Symfony 2 bundle. **** Let’s start by creating the structure for your Field Type.

To make it easier to move around the code, you will to some extent mimic the structure that is used in the kernel of eZ Platform. Native Field Types are located inside ezpublish-kernel (in vendor/ezsystems), in the eZ/Publish/Core/FieldType folder.
Each Field Type has its own subfolder: TextLine, Email, Url, etc.

Clone the Github repository to follow this tutorial, it will be useful:

 Developer : Implement the Tweet\Value class

	Developer

	Creating a Tweet Field Type

 Developer : Implement the Tweet\Value class

The Value class of a Field Type is by design very simple. It is meant to be stateless and as lightweight as possible. This class must contain as little logic as possible, because the logic is the responsibility of the Type class. You will create this Type class in the next step.

All the code for the Bundle will be created in: src/EzSystems/TweetFieldTypeBundle

The Value class will contain at least:

	public properties: used to store the actual data

	an implementation of the __toString() method: required by the Value interface it inherits from

By default, the constructor from FieldType\Value will be used. It allows you to pass a hash of property/value pairs. You can override it as well if you want.

The Tweet Field Type is going to store 3 elements:

	The tweet’s URL

	The tweet’s author URL

	The body, as an HTML string

At this point, it does not matter where they are stored. All you care about is what you want your Field Type to expose as an API.

You will end up with the following properties:

eZ/Publish/FieldType/Tweet/Value.php

//Properties of the class Value
/**
* Tweet URL on twitter.com (http://twitter.com/UserName/status/id).
* @var string
*/
public $url;

/**
* Author's tweet URL (http://twitter.com/UserName)
* @var string
*/
public $authorUrl;

/**
* The tweet's embed HTML
* @var string
*/
public $contents;

The only thing left to honor the FieldType\Value interface is to add a __toString() method, in addition to the constructor. Let’s say that yours will return the tweet’s URL:

eZ/Publish/FieldType/Tweet/Value.php

//Methods of the class Value
public function __toString()
{
 return (string)$this->url;
}

⬅ Previous: Structure the bundle

Next: Implement the Tweet\Type class ➡

 Developer : Create the bundle

	Developer

	Creating a Tweet Field Type

	Build the bundle

 Developer : Create the bundle

Once you have installed eZ Platform [https://doc.ez.no/x/opPfAQ], including the creation of a database for the tutorial, configured your server [https://doc.ez.no/pages/viewpage.action?pageId=31429536], and started your web server [https://doc.ez.no/display/DEVELOPER/Web+Server], you need to create a code base for the tutorial.

We will use the Symfony 2 extension mechanism, bundles, to wrap the Fieldtype. You can get started with a bundle using the built-in Symfony 2 bundle generator, following the instructions on this page.
Then you will configure your Bundle to be able to write the code you need to create a Field Type.

Thetutorial Github repository shows you the Bundle finished.

Generating the bundle

From the eZ Platform root, run the following:

php app/console generate:bundle

First, you are asked:

Are you planning on sharing this bundle across multiple applications? [no]: yes <enter>

Type the answer yes and submit it with an Enter.

Next you will be asked about the namespace of your bundle.

More about naming bundles

See

 Developer : Build the bundle

	Developer

	Creating a Tweet Field Type

 Developer : Build the bundle

FieldTypes, like any other eZ Platform extensions, must be provided as Symfony 2 bundles. This chapter covers the creation and organization of this bundle.

First, you will see how to generate the skeleton for a standard Symfony 2 bundle using the console: Create the bundle. Then, you can learn about the suggested structure for storing a Field Type inside a bundle: Structure the bundle.

⬅ Previous: Introduction to “Creating a Tweet Field Type” tutorial

Next: Create the bundle ➡

 Developer : Implement the Legacy Storage Engine Converter

	Developer

	Creating a Tweet Field Type

 Developer : Implement the Legacy Storage Engine Converter

So far, your Field Type’s value is represented by the Tweet\Value class. It holds a semantic representation of the type’s data: a URL, author URL and the tweet’s content.

The next step is to tell the system how to actually store this.

About converters

Unlike eZ Publish Legacy, eZ Platform supports (by design) multiple storage engines. The main, and almost only one right now is the Legacy Storage Engine, based on the legacy database, with a new implementation. Since each storage engine may have its own way of storing data, you need to map each Field Type value to something legacy can understand.

We will implement a Field Type Converter, each storage engine defining its own interface for those.

Legacy Field Type converters

The legacy storage engine uses the ezcontentobject_attribute table to store Field values, and ezcontentclass_attribute to store Field definition values (settings, etc.). They are both based on the same principle.

Each row represents a Field or a FieldDefinition, and offers several free fields, of different types, where the type can store its data:

	ezcontentobject_attribute offers 3 fields for this purpose:
	data_int

	data_text

	data_float

	ezcontentclass_attribute offers a few more:
	four data_int (data_int1 to data_int4) fields

	four data_float (data_float1 to data_float4) ones

	five data_text (data_text1 to data_text5)

Each type is free to use those fields in any way it requires. Converters will map a Field’s semantic values to the fields described above, for both settings (validation + configuration) and value.

Implementing Tweet\LegacyConverter

The Converter will be placed alongside the Type and Value definitions (the kernel stores them inside the Legacy Storage Engine structure): eZ/Publish/FieldType/Tweet/LegacyConverter.php .

A Legacy Converter must implement the eZ\Publish\Core\Persistence\Legacy\Content\FieldValue\Converter interface:

weetFieldTypeBundle/eZ/Publish/FieldType/Tweet/LegacyConverter.php

<?php
namespace EzSystems\TweetFieldTypeBundle\eZ\Publish\FieldType\Tweet;

use eZ\Publish\Core\Persistence\Legacy\Content\FieldValue\Converter;

class LegacyConverter implements Converter
{
}

The Converter interface expects you to implement 5 methods:

	toStorageValue() and toFieldValue()
used to convert an API field value to a legacy storage value, and a legacy storage value to an API field value.

	toStorageFieldDefinition() and toFieldDefinition()
used to convert a field definition to a legacy one, and a stored legacy field definition to an API field definition.

	getIndexColumn()
tell the API which legacy DB field should be used to sort & filter content, either sort_key_string or sort_key_int.

Implementing Field Value converters: toFieldValue() and toStorageValue()

As said above, those two methods are used to convert from a Field to a value that Legacy can store, and the other way around.

You have defined that you wanted to store the tweet’s URL in data_text, and that sorting would be done on the username-status-tweetid string you extract in getName() and getSortInfo().

toStorageValue() will fill the provided eZ\Publish\Core\Persistence\Legacy\Content\StorageFieldValue from a Tweet\Value, while toFieldValue() will do the exact opposite:

weetFieldTypeBundle/eZ/Publish/FieldType/Tweet/LegacyConverter.php

use eZ\Publish\Core\Persistence\Legacy\Content\StorageFieldValue;
use eZ\Publish\SPI\Persistence\Content\FieldValue;

// [...]

public function toStorageValue(FieldValue $value, StorageFieldValue $storageFieldValue)
{
 $storageFieldValue->dataText = json_encode($value->data);
 $storageFieldValue->sortKeyString = $value->sortKey;
}

public function toFieldValue(StorageFieldValue $value, FieldValue $fieldValue)
{
 $fieldValue->data = json_decode($value->dataText, true);
 $fieldValue->sortKey = $value->sortKeyString;
}

With these two methods, the legacy storage engine is able to convert a Tweet\Value into legacy data, and legacy data back into a Tweet\Value object.

Implementing Field Definition converters: toStorageFieldDefinition() and toFieldDefinition()

The first two methods you have implemented apply to a Field’s value, but you also need to convert your Field’s definition. For example, a TextLine’s max length, or any FieldDefinition option.

This is done using toStorageDefinition() that converts a FieldDefinition into a StorageFieldDefinition. toFieldDefinition() does the opposite. In this case, you actually don’t need to implement those methods since your Tweet Type doesn’t have settings:

weetFieldTypeBundle/eZ/Publish/FieldType/Tweet/LegacyConverter.php

use eZ\Publish\Core\Persistence\Legacy\Content\StorageFieldDefinition;
use eZ\Publish\SPI\Persistence\Content\Type\FieldDefinition;

// [...]

public function toStorageFieldDefinition(FieldDefinition $fieldDef, StorageFieldDefinition $storageDef)
{
}

public function toFieldDefinition(StorageFieldDefinition $storageDef, FieldDefinition $fieldDef)
{
}

Implementing getIndexColumn()

In toFieldValue() and toStorageValue() you have used the sortKeyString property from StorageFieldValue. getIndexColumn() will tell provide the legacy storage engine with the type of index / sort column it should use: string (sort_key_string) or int (sort_key_int). Depending on which one is returned, the system will either use the sortKeyString or the sortKeyInt properties from the StorageFieldValue.

weetFieldTypeBundle/eZ/Publish/FieldType/Tweet/LegacyConverter.php

public function getIndexColumn()
{
 return 'sort_key_string';
}

Registering the converter

Just like a Type, a Legacy Converter needs to be registered and tagged in the service container.

The tag is ezpublish.storageEngine.legacy.converter, and it requires an alias attribute to be set to the Field Type identifier (eztweet). Add this block to Resources/config/services.yml:

Resources/config/services.yml

services:
declaration of the Fieldtype service
...
 ezsystems.tweetbundle.fieldtype.eztweet.converter:
 class: EzSystems\TweetFieldTypeBundle\eZ\Publish\FieldType\Tweet\LegacyConverter
 tags:
 - {name: ezpublish.storageEngine.legacy.converter, alias: eztweet}

⬅ Previous: Register the Field Type as a service

Next: Introduce a template ➡

Tutorial path

	About converters

	Legacy Field Type converters

	[Implementing Tweet\LegacyConverter](#ImplementtheLegacyStorageEngineConverter-ImplementingTweet\LegacyConverter)
	Implementing Field Value converters: toFieldValue() and toStorageValue()

	Implementing Field Definition converters: toStorageFieldDefinition() and toFieldDefinition()

	Implementing getIndexColumn()

	Registering the converter

 Developer : Register the Field Type as a service

	Developer

	Creating a Tweet Field Type

 Developer : Register the Field Type as a service

To complete the implementation, you must register your Field Type with Symfony by creating a service for it.

Services are by default declared by bundles in Resources/config/services.yml.

Using a dedicated file for the Field Type services

In order to be closer to the kernel best practices, you could declare your Field Type services in a custom fieldtypes.yml file.

All you have to do is instruct the bundle to actually load this file in addition to services.yml (or instead of services.yml!). This is done in the extension definition file, DependencyInjection/EzSystemsTweetFieldTypeExtension.php, in the load() method.

Inside this file, find this line:

$loader->load('services.yml');

This is where your bundle tells Symfony that when parameters are loaded, services.yml should be loaded from Resources/config/ (defined above). Either replace the line, or add a new one with:

$loader->load('fieldtypes.yml');

Like most API components, Field Types use the Symfony 2 service tag mechanism.

The principle is quite simple: a service can be assigned one or several tags, with specific parameters. When the dependency injection container is compiled into a PHP file, tags are read by CompilerPass implementations that add extra handling for tagged services. Each service tagged as ezpublish.fieldType is added to a registry using the alias argument as its unique identifier (ezstring, ezxmltext, etc.). Each Field Type must also inherit from the abstract ezpublish.fieldType service. This ensures that the initialization steps shared by all Field Types are executed.

Here is the service definition for your Tweet type:

Resources/config/services.yml

services:
 ezsystems.tweetbundle.twitter.client:
 class: EzSystems\TweetFieldTypeBundle\Twitter\TwitterClient

You take care of namespacing your Field Type with your vendor and bundle name to limit the risk of naming conflicts.

And you can create a YAML file dedicated to the Bundle

Resources/config/fieldtypes.yml

services:
 ezsystems.tweetbundle.fieldtype.eztweet:
 parent: ezpublish.fieldType
 class: EzSystems\TweetFieldTypeBundle\eZ\Publish\FieldType\Tweet\Type
 tags:
 - {name: ezpublish.fieldType, alias: eztweet}
 arguments: ['@ezsystems.tweetbundle.twitter.client']

⬅ Previous: Implement the Tweet\Type class

Next: Implement the Legacy Storage Engine Converter ➡

 <no title>

 Developer : Introduce a template

	Developer

	Creating a Tweet Field Type

 Developer : Introduce a template

In order to display data of your Field Type from templates, you need to create and register a template for it. You can find documentation about FieldType templates [https://doc.ez.no/display/DEVELOPER/Field+Type+template], as well as on importing settings from a bundle [https://doc.ez.no/display/DEVELOPER/Importing+settings+from+a+bundle].

In short, such a template must:

	extend EzPublishCoreBundle::content_fields.html.twig

	define a dedicated Twig block for the type, named by convention <TypeIdentifier_field>, in this case, eztweet_field

	be registered in parameters

The template:Resources/views/fields/eztweet.html.twig

The first thing to do is create the template. It will basically define the default display of a tweet. Remember that field type templates can be overridden in order to tweak what is displayed and how.

Each Field Type template receives a set of variables that can be used to achieve the desired goal. The variable you care about is field, an instance of eZ\Publish\API\Repository\Values\Content\Field. In addition to its own metadata (id, fieldDefIdentifier, etc.), it exposes the Field Value (Tweet\Value) through the value property.

This would work as a primitive template:

TweetFieldTypeBundle/Resources/views/fields/eztweet.html.twig

{% extends "EzPublishCoreBundle::content_fields.html.twig" %}

{% block eztweet_field %}
{% spaceless %}
 {{ field.value.contents|raw }}
{% endspaceless %}
{% endblock %}

field.value.contents is piped through the raw twig operator, since the variable contains HTML code. Without it, the HTML markup would be visible directly, since twig escapes variables by default. Notice that the code is nested within a spaceless tag, so that you can format the template in a readable manner without jeopardizing the display with unwanted spaces.

Using the content field helpers

Even though the above will work just fine, a few helpers will enable you to get something a bit more flexible. The EzPublishCoreBundle::content_fields.html.twig template, where the native Field Type templates are implemented, provides a few helpers: simple_block_field, simple_inline_field and field_attributes. The first two are used to display a field either as a block or inline. field_attributes makes it easier to use the attr variable that contains additional (HTML) attributes for the field.

Let’s try to display the value as a block element.

First, you need to make the template inherit from content_fields.html.twig. Then, create a field_value variable that will be used by the helper to print out the content inside the markup. And that’s it. The helper will use field_attributes to add the HTML attributes to the generated div.

TweetFieldTypeBundle/Resources/views/fields/eztweet.html.twig

{% extends "EzPublishCoreBundle::content_fields.html.twig" %}

{% block eztweet_field %}
{% spaceless %}
 {% set field_value %}
 {{ field.value.contents|raw }}
 {% endset %}
 {{ block('simple_block_field') }}
{% endspaceless %}
{% endblock %}

fieldValue is set to the markup you had above, using a {% set %} block. You then call the block function to process the simple_block_field template block.

Registering the template

As explained in the FieldType template documentation, a Field Type template needs to be registered in the eZ Platform semantic configuration. The most basic way to do this would be to do so in app/config/ezplatform.yml:

app/config/ezplatform.yml

ezpublish:
 global:
 field_templates:
 - { template: "EzSystemsTweetFieldTypeBundle:fields:eztweet.html.twig"}

However, this is far from ideal. You want this to be part of our bundle, so that no manual configuration is required. For that to happen, you need to make the bundle extend the eZ Platform semantic configuration.

To do so, you are going to make your Bundle’s dependency injection extension (DependencyInjection/EzSystemsTweetFieldTypeExtension.php) implement Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface. This interface will let you prepend bundle configuration:

TweetFieldTypeBundle/DependencyInjection/EzSystemsTweetFieldTypeExtension.php

<?php
use Symfony\Component\DependencyInjection\Extension\PrependExtensionInterface;
use Symfony\Component\Yaml\Yaml;

class EzSystemsTweetFieldTypeExtension extends Extension implements PrependExtensionInterface
{
 public function prepend(ContainerBuilder $container)
 {
 $config = Yaml::parse(file_get_contents(__DIR__.'/../Resources/config/ez_field_templates.yml'));
 $container->prependExtensionConfig('ezpublish', $config);
 }
}

The last thing to do is move the template mapping from app/config/ezplatform.yml to Resources/config/ezpublish_field_templates.yml:

Resources/config/ezpublish_field_templates.yml

system:
 default:
 field_templates:
 - {template: EzSystemsTweetFieldTypeBundle:fields:eztweet.html.twig, priority: 0}

Notice that the ezpublish yaml block was deleted. This is because you already import your configuration under the ezpublish namespace in the prepend method.

You should now be able to display a Content item with this Field Type from the front office, with a fully functional embed:

⬅ Previous: Implement the Legacy Storage Engine Converter

Attachments:

 fieldtype tutorial, final result.PNG (image/png)

 Developer : Creating a Tweet Field Type

	Developer

 Developer : Creating a Tweet Field Type

Getting the code

The code created in this tutorial is available on GitHub:

 Developer : Implement the Tweet\Type class

	Developer

	Creating a Tweet Field Type

 Developer : Implement the Tweet\Type class

As said in the introduction, the Type class of a Field Type must implement eZ\Publish\SPI\FieldType\FieldType (later referred to as “Field Type interface”).

All native Field Types also extend the eZ\Publish\Core\FieldType\FieldType abstract class that implements this interface and provides implementation facilities through a set of abstract methods of its own. In this case, Type classes implement a mix of methods from the Field Type interface and from the abstract Field Type.

Let’s go over those methods and their implementation.

Identification method

getFieldTypeIdentifier()

This method must return the string that uniquely identifies this Field Type (DataTypeString in legacy), in this case “eztweet”:

eZ/Publish/FieldType/Tweet/Type.php

public function getFieldTypeIdentifier()
{
 return 'eztweet';
}

Value handling methods

createValueFromInput() and checkValueStructure()

Both methods are used by the abstract Field Type implementation of acceptValue(). This Field Type interface method checks and transforms various input values into the type’s own Value class: eZ\FieldType\Tweet\Value. This method must:

	either return the Value object it was able to create out of the input value,

	or return this value untouched. The API will detect this and inform that the input value was not accepted.

The only acceptable value for your type is the URL of a tweet (you could of course imagine more possibilities). This should do:

protected function createValueFromInput($inputValue)
{
 if (is_string($inputValue))
 {
 $inputValue = new Value(array('url' => $inputValue));
 }

 return $inputValue;
}

Use this method to provide convenient ways to set an attribute’s value using the API. This can be anything from primitives to complex business objects.

Next, implement checkValueStructure(). It is called by the abstract Field Type to ensure that the Value fed to the Type is acceptable. In this case, you want to be sure that Tweet \Value::$url is a string:

protected function checkValueStructure(BaseValue $value)
{
 if (!is_string($value->url))
 {
 throw new eZ\Publish\Core\Base\Exceptions\InvalidArgumentType(
 '$value->url',
 'string',
 $value->url
);
 }
}

You see that this executes the same check as in createValueFromInput(), but both methods aren’t responsible for the same thing. The first will, if given something else than a Value of its type, try to convert it to one. checkValueStructure() will always be used, even if the Field Type is directly fed a Value object, and not a string.

Value initialization

getEmptyValue()

This method provides what is considered an empty value of this type, depending on your business requirements. No extra initialization is required in this case.

eZ/Publish/FieldType/Tweet/Type.php

public function getEmptyValue()
{
 return new Value;
}

If you ran the unit tests at this point, you would get about five failures, all of them on the fromHash() or toHash() methods. You’ll handle them later.

Validation methods

validateValidatorConfiguration() and validate()

The Type class is also responsible for validating input data (to a Field), as well as configuration input data (to a FieldDefinition). In this tutorial, we will run two validation operations on input data:

	validate submitted urls, ensuring they actually reference a Twitter status;

	limit input to a known list of authors, as an optional validation step.

validateValidatorConfiguration() will be called when an instance of the Field Type is added to a Content Type, to ensure that the validator configuration is valid.

For the validator schema configuration, you can add:

eZ/Publish/FieldType/Tweet/Type.php

protected $validatorConfigurationSchema = array(
 'TweetUrlValidator' => array(),
 'TweetAuthorValidator' => array(
 'AuthorList' => array(
 'type' => 'array',
 'default' => array()
)
)
);

For a TextLine (length validation), it means checking that both min length and max length are positive integers, and that min is lower than max.

When an instance of the type is added to a Content Type, validateValidatorConfiguration() receives the configuration for the validators used by the Type as an array. It must return an array of error messages if errors are found in the configuration, and an empty array if no errors were found.

For TextLine, the provided array looks like this:

eZ/Publish/FieldType/Tweet/Type.php

array(
 'StringLengthValidator' => array(
 'minStringLength' => 0,
 'maxStringLength' => 100
)
);

The structure of this array is totally free, and up to each type implementation. In this tutorial it will mimic what is done in native Field Types:

Each level one key is the name of a validator, as acknowledged by the Type. That key contains a set of parameter name / parameter value rows. You must check that:

	all the validators in this array are known to the type

	arguments for those validators are valid and have sane values

You do not need to include mandatory validators if they don’t have options. Here is an example of what your Type expects as validation configuration:

array(
 ‘TweetAuthorValidator’ => array(
 ‘AuthorList’ => array(‘johndoe’, ‘janedoe’)
)
);

The configuration says that tweets must be either by johndoe or by janedoe. If you had not provided TweetAuthorValidator at all, it would have been ignored.

You will iterate over the items in $validatorConfiguration and:

add errors for those you don’t know about;

check that provided arguments are known and valid:

	TweetAuthorValidator accepts a non-empty array of valid Twitter usernames

eZ/Publish/FieldType/Tweet/Type.php

public function validateValidatorConfiguration($validatorConfiguration)
{
 $validationErrors = array();
 foreach ($validatorConfiguration as $validatorIdentifier => $constraints) {
 // Report unknown validators
 if ($validatorIdentifier !== 'TweetValueValidator') {
 $validationErrors[] = new ValidationError("Validator '$validatorIdentifier' is unknown");
 continue;
 }
 // Validate arguments from TweetValueValidator
 foreach ($constraints as $name => $value) {
 switch ($name) {
 case 'authorList':
 if (!is_array($value)) {
 $validationErrors[] = new ValidationError("Invalid authorList argument");
 }

 foreach ($value as $authorName) {
 if (!preg_match('/^[a-z0-9_]{1,15}$/i', $authorName)) {
 $validationErrors[] = new ValidationError("Invalid twitter username");
 }
 }
 break;
 default:
 $validationErrors[] = new ValidationError("Validator parameter '$name' is unknown");
 }
 }
 }
 return $validationErrors;
}

validate() is the method that runs the actual validation on data, when a content item is created with a Field of this type:

eZ/Publish/FieldType/Tweet/Type.php

/**
 * Validates a field based on the validators in the field definition.
 *
 * @throws \eZ\Publish\API\Repository\Exceptions\InvalidArgumentException
 *
 * @param \eZ\Publish\API\Repository\Values\ContentType\FieldDefinition $fieldDefinition
 * The field definition of the field
 * @param Value $fieldValue The field value for which an action is performed
 *
 * @return \eZ\Publish\SPI\FieldType\ValidationError[]
 */
 public function validate(FieldDefinition $fieldDefinition, SPIValue $fieldValue)
 {
 $errors = [];
 if ($this->isEmptyValue($fieldValue)) {
 return $errors;
 }
 // Tweet Url validation
 if (!preg_match('#^https?://twitter.com/([^/]+)/status/[0-9]+$#', $fieldValue->url, $m)) {
 $errors[] = new ValidationError(
 'Invalid twitter status url %url%',
 null,
 ['%url%' => $fieldValue->url]
);
 return $errors;
 }
 $author = $m[1];
 $validatorConfiguration = $fieldDefinition->getValidatorConfiguration();
 if (!$this->isAuthorApproved($author, $validatorConfiguration)) {
 $errors[] = new ValidationError(
 'Twitter user %user% is not in the approved author list',
 null,
 ['%user%' => $m[1]]
);
 }
 return $errors;
 }

First, you validate the url with a regular expression. If it doesn’t match, you add an instance of ValidationError to the return array. Note that the tested value isn’t directly embedded in the message but passed as an argument. This ensures that the variable is properly encoded in order to prevent attacks, and allows for singular/plural phrases using the second parameter.

Then, if your Field Type instance’s configuration contains a TweetValueValidator key, you will check that the username in the status url matches one of the valid authors.

Metadata handling methods

getName() and getSortInfo()

Field Types require two methods related to Field metadata:

	getName() is used to generate a name out of a Field value, either to name a Content item (naming pattern in legacy) or to generate a part for a URL alias.

	getSortInfo() is used by the persistence layer to obtain the value it can use to sort and filter on a Field of this type

Obviously, a tweet’s full URL isn’t really suitable as a name. Let’s use a subset of it: <username>-<tweetId> should be reasonable enough, and suitable for both sorting and naming.

You can assume that this method will not be called if the Field is empty, and that the URL is a valid twitter URL:

public function getName(SPIValue $value)
{
 return preg_replace(
 '#^https?://twitter\.com/([^/]+)/status/([0-9]+)$#',
 '$1-$2',
 (string)$value->url);
}

protected function getSortInfo(CoreValue $value)
{
 return (string)$value->url;
}

In getName() you run a regular expression replace on the URL to extract the part you’re interested in.

This name is a perfect match for getSortInfo() as it allows you to sort by the tweet’s author and by the tweet’s ID.

Field Type serialization methods

fromHash() and toHash()

Both methods defined in the Field Type interface are core to the REST API. They are used to export values to serializable hashes.

In this case it is quite easy:

	toHash() will build a hash with every property from Tweet\Value;

	fromHash() will instantiate a Tweet\Value with the hash it receives.

public function fromHash($hash)
{
 if ($hash === null)
 {
 return $this->getEmptyValue();
 }
 return new Value($hash);
}

public function toHash(SPIValue $value)
{
 if ($this->isEmptyValue($value)) {
 return null;
 }
 return [
 'url' => $value->url,
 'authorUrl' => $value->authorUrl,
 'contents' => $value->contents
];
}

Persistence methods

fromPersistenceValue() and toPersistenceValue()

Storage of Field Type data is done through the persistence layer (SPI).

Field Types use their own Value objects to expose their contents using their own domain language. However, to store those objects, the Type needs to map this custom object to a structure understood by the persistence layer: PersistenceValue. This simple value object has three properties:

	data – standard data, stored using the storage engine’s native features

	externalData – external data, stored using a custom storage handler

	sortKey – sort value used for sorting

The role of those mapping methods is to convert a Value of the Field Type into a PersistenceValue and the other way around.

About external storage

Whatever is stored in externalData requires an external storage handler to be written. Read more about external storage in Field Type API and best practices [https://doc.ez.no/display/DEVELOPER/Field+Type+API+and+best+practices].

External storage is beyond the scope of this tutorial, but many examples can be found in existing Field Types.

You will follow a simple implementation here: the Tweet\Value object will be serialized as an array to the code property using fromHash() and toHash():

Tweet\Type

/**
 * @param \EzSystems\TweetFieldTypeBundle\eZ\Publish\FieldType\Tweet\Value $value
 * @return \eZ\Publish\SPI\Persistence\Content\FieldValue
 */
public function toPersistenceValue(SPIValue $value)
{
 if ($value === null) {
 return new PersistenceValue(
 [
 'data' => null,
 'externalData' => null,
 'sortKey' => null,
]
);
 }
 return new PersistenceValue(
 [
 'data' => $this->toHash($value),
 'sortKey' => $this->getSortInfo($value),
]
);
}
/**
 * @param \eZ\Publish\SPI\Persistence\Content\FieldValue $fieldValue
 * @return \EzSystems\TweetFieldTypeBundle\eZ\Publish\FieldType\Tweet\Value
 */
public function fromPersistenceValue(PersistenceValue $fieldValue)
{
 if ($fieldValue->data === null)
 {
 return $this->getEmptyValue();
 }
 return new Value($fieldValue->data);
}

Fetching data from the Twitter API

As explained in the tutorial’s introduction, you will enrich our tweet’s URL with the embed version, fetched using the Twitter API. To do so, you will, when toPersistenceValue() is called, fill in the value’s contents property from this method, before creating the PersistenceValue object.

First, we need a Twitter client in Tweet\Type. For convenience, one is provided in this tutorial’s bundle:

	the Twitter\TwitterClient class

	the Twitter\TwitterClientInterface interface

	an ezsystems.tweetbundle.twitter.client service that uses the class above.

The interface has one method: getEmbed($statusUrl) that, given a tweet’s URL, returns the embed code as a string. The implementation is very simple, for the sake of simplicity, but gets the job done. Ideally, it should at the very least handle errors, but it is not necessary here.

Injecting the Twitter client into Tweet\Type

Your Field Type doesn’t have a constructor yet. You will create one, with an instance of Twitter\TwitterClientInterface as the argument, and store it in a new protected property:

eZ/Publish/FieldType/Tweet/Type.php:

use EzSystems\TweetFieldTypeBundle\Twitter\TwitterClientInterface;

class Type extends FieldType
{
 /** @var TwitterClientInterface */
 protected $twitterClient;

 public function __construct(TwitterClientInterface $twitterClient)
 {
 $this->twitterClient = $twitterClient;
 }
}

Completing the value using the Twitter client

As described above, before creating the PersistenceValue object in toPersistenceValue, you will fetch the tweet’s embed contents using the client, and assign it to Tweet\Value::$data:

eZ/Publish/FieldType/Tweet/Type.php

 public function toPersistenceValue(SPIValue $value)
 {
 if ($value === null) {
 return new PersistenceValue(
 [
 'data' => null,
 'externalData' => null,
 'sortKey' => null,
]
);
 }
 if ($value->contents === null) {
 $value->contents = $this->twitterClient->getEmbed($value->url);
 }
 return new PersistenceValue(
 [
 'data' => $this->toHash($value),
 'sortKey' => $this->getSortInfo($value),
]
);
 }

And that’s it! When the persistence layer stores content from our type, the value will be completed with what the twitter API returns.

⬅ Previous: Implement the Tweet\Value class

Next: Register the Field Type as a service ➡

Tutorial path

Tweet\Type class methods

	[Identification method](#ImplementtheTweet\Typeclass-Identificationmethod)
	[getFieldTypeIdentifier()](#ImplementtheTweet\Typeclass-getFieldTypeIdentifier())

	[Value handling methods](#ImplementtheTweet\Typeclass-Valuehandlingmethods)
	[createValueFromInput() and checkValueStructure()](#ImplementtheTweet\Typeclass-createValueFromInput()andcheckValueStructure())

	[Value initialization](#ImplementtheTweet\Typeclass-Valueinitialization)
	[getEmptyValue()](#ImplementtheTweet\Typeclass-getEmptyValue())

	[Validation methods](#ImplementtheTweet\Typeclass-Validationmethods)
	[validateValidatorConfiguration() and validate()](#ImplementtheTweet\Typeclass-validateValidatorConfiguration()andvalidate())

	[Metadata handling methods](#ImplementtheTweet\Typeclass-Metadatahandlingmethods)
	[getName() and getSortInfo()](#ImplementtheTweet\Typeclass-getName()andgetSortInfo())

	[Field Type serialization methods](#ImplementtheTweet\Typecl